论文标题
LXPER指数2.0:改进韩国L2英语学生的文本可读性评估模型
LXPER Index 2.0: Improving Text Readability Assessment Model for L2 English Students in Korea
论文作者
论文摘要
为外国英语培训(ELT)课程中专门针对文本的文本可读性评估模型从未在自然语言处理领域受到很多关注。因此,对于L2英语文本而言,大多数开发的模型的精度极低,直到没有多少人甚至可以作为一个公平的比较。在本文中,我们研究了韩国L2英语学习者的文本可读性评估模型。根据韩国ELT课程(COKEC-TEXT)的文本语料库,我们改善和扩展了文本语料库。每个文本都标有其目标等级。我们使用COKEC-TEXT训练模型,并显着提高了韩国ELT课程中文本的可读性评估的准确性。
Developing a text readability assessment model specifically for texts in a foreign English Language Training (ELT) curriculum has never had much attention in the field of Natural Language Processing. Hence, most developed models show extremely low accuracy for L2 English texts, up to the point where not many even serve as a fair comparison. In this paper, we investigate a text readability assessment model for L2 English learners in Korea. In accordance, we improve and expand the Text Corpus of the Korean ELT curriculum (CoKEC-text). Each text is labeled with its target grade level. We train our model with CoKEC-text and significantly improve the accuracy of readability assessment for texts in the Korean ELT curriculum.