论文标题

可扩展的贝叶斯优化,稀疏高斯工艺模型

Scalable Bayesian Optimization with Sparse Gaussian Process Models

论文作者

Yang, Ang

论文摘要

本文的重点是贝叶斯优化,其改进来自两个方面:(i)使用衍生信息来加速优化收敛; (ii)考虑可扩展的GP来处理大量数据。

This thesis focuses on Bayesian optimization with the improvements coming from two aspects:(i) the use of derivative information to accelerate the optimization convergence; and (ii) the consideration of scalable GPs for handling massive data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源