论文标题
可扩展的贝叶斯优化,稀疏高斯工艺模型
Scalable Bayesian Optimization with Sparse Gaussian Process Models
论文作者
论文摘要
本文的重点是贝叶斯优化,其改进来自两个方面:(i)使用衍生信息来加速优化收敛; (ii)考虑可扩展的GP来处理大量数据。
This thesis focuses on Bayesian optimization with the improvements coming from two aspects:(i) the use of derivative information to accelerate the optimization convergence; and (ii) the consideration of scalable GPs for handling massive data.