论文标题
霍姆 - 约旦 - 马尔塞夫 - 波森代数
Hom-Jordan-Malcev-Poisson algebras
论文作者
论文摘要
本文的目的是提供和研究Jordan-Malcev-Poisson代数的HOM型概括,称为Hom-Jordan-Malcev-Poisson代数。我们表明,它们在合适的自图下扭曲下是封闭的,并给出了可允许的Hom-Jordan-Malcev-Poisson代数的特征。此外,我们介绍了伪 - 欧亚人霍姆 - 约旦 - 莫尔塞夫 - 波森代数的概念,并描述其$ t^*$ - 扩展。最后,我们将Lie-Jordan-Poisson三重系统的概念推广到HOM设置,并与Hom-Jordan-Malcev-Poisson代数建立关系。
The purpose of this paper is to provide and study a Hom-type generalization of Jordan-Malcev-Poisson algebras, called Hom-Jordan-Malcev-Poisson algebras. We show that they are closed under twisting by suitable self-maps and give a characterization of admissible Hom-Jordan-Malcev-Poisson algebras. In addition, we introduce the notion of pseudo-Euclidian Hom-Jordan-Malcev-Poisson algebras and describe its $T^*$-extension. Finally, we generalize the notion of Lie-Jordan-Poisson triple system to the Hom setting and establish its relationships with Hom-Jordan-Malcev-Poisson algebras.