论文标题
爱因斯坦 - 斯卡尔 - 高斯 - 骨网中的黑洞和虫洞广义理论
Black holes and wormholes in the Einstein-scalar-Gauss-Bonnet generalized theories of gravity
论文作者
论文摘要
在此博士学位论文我们研究了爱因斯坦 - 斯卡尔 - 高斯 - 邦纳特(ESGB)理论框架中黑洞和虫洞溶液的出现。特别是我们研究了一个理论家族,其中耦合函数$ f(ϕ)$之间的标量和二次高斯 - 基人重力重力项具有任意形式。首先,我们通过分析得出的是,上述理论可能会发现Bekenstein的无量表头发定理所施加的约束和黑洞的新解决方案。然后,使用数值集成方法,我们找到了许多不同形式的耦合函数的黑洞解决方案。同样,我们得出它们的身体特征,即它们的质量,标量电荷,地平线和熵。随后,通过引入宇宙学常数,我们研究了新型黑洞溶液的存在。具体而言,假设宇宙常数可能是正面的或负的,我们发现渐近保姆或反DE保姆的数值解。另外,与渐近平坦的黑洞一样,对于每种情况,我们都会得出它们的物理特征。最后,在ESGB理论的框架内,我们得出了新颖的虫洞解决方案。高斯 - 骨网虫孔是可遍历的,可能有一个或双喉咙,不需要外来物质的存在。
In this Ph.D. dissertation we study the emergence of black-hole and wormhole solutions in the framework of the Einstein-scalar-Gauss-Bonnet (EsGB) theory. Particularly we study a family of theories where the coupling function $f(ϕ)$ between the scalar field of the theory and the quadratic Gauss-Bonnet gravitational term has an arbitrary form. At first, we analytically derive that the aforementioned family of theories may evade the constraints imposed by Bekenstein's No-Scalar Hair theorems and new solutions for black holes may be found. Then, using numerical integration methods we find solutions for black holes for many different forms of the coupling function. Also we derive their physical characteristics namely their mass, scalar charge, horizon area and entropy as well. Subsequently, by introducing a cosmological constant in the theory we investigate the existence of novel black-hole solutions. Specifically, assuming that the cosmological constant may be positive or negative we find numerical solutions which are asymptotically de Sitter or anti-de Sitter. In addition, as in the case of the asymptotically flat black holes, for each case we derive their physical characteristics. Finally, in the framework of the EsGB theory we derive novel wormhole solutions. The Gauss-Bonnet wormholes are traversable, may have a single or a double throat and do not demand the existence of exotic matter.