论文标题

课程学习的调查

A Survey on Curriculum Learning

论文作者

Wang, Xin, Chen, Yudong, Zhu, Wenwu

论文摘要

课程学习(CL)是一种培训策略,可培训机器学习模型从更轻松的数据到更艰难的数据,从而模仿了人类课程中有意义的学习顺序。作为一种易于使用的插件,CL策略已经证明了其在各种场景中(例如计算机视觉和自然语言处理等)中提高各种模型的概括能力和收敛速率等的力量,在本调查文章中,我们从各个方面进行了全面审查CL,包括动机,定义,理论和应用。我们讨论了一般CL框架中课程学习的作品,详细介绍了如何设计手动预定义的课程或自动课程。特别是,我们基于难度测量器+培训调度程序的一般框架总结现有的CL设计,并将自动CL的方法进一步分为四组,即自定进度的学习,转移教师,RL老师和其他自动CL。我们还分析了选择可能受益于实际应用的不同CL设计的原则。最后,我们介绍了有关连接CL和其他机器学习概念的关系的见解,包括转移学习,元学习,持续学习和积极学习等,然后指出CL中的挑战以及潜在的未来研究方向,应进行进一步的研究。

Curriculum learning (CL) is a training strategy that trains a machine learning model from easier data to harder data, which imitates the meaningful learning order in human curricula. As an easy-to-use plug-in, the CL strategy has demonstrated its power in improving the generalization capacity and convergence rate of various models in a wide range of scenarios such as computer vision and natural language processing etc. In this survey article, we comprehensively review CL from various aspects including motivations, definitions, theories, and applications. We discuss works on curriculum learning within a general CL framework, elaborating on how to design a manually predefined curriculum or an automatic curriculum. In particular, we summarize existing CL designs based on the general framework of Difficulty Measurer+Training Scheduler and further categorize the methodologies for automatic CL into four groups, i.e., Self-paced Learning, Transfer Teacher, RL Teacher, and Other Automatic CL. We also analyze principles to select different CL designs that may benefit practical applications. Finally, we present our insights on the relationships connecting CL and other machine learning concepts including transfer learning, meta-learning, continual learning and active learning, etc., then point out challenges in CL as well as potential future research directions deserving further investigations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源