论文标题
$^7 \ mathrm {be}(p,γ)^8 \ mathrm {b} $的耦合通道处理
Coupled-channels treatment of $^7\mathrm{Be}(p,γ)^8\mathrm{B}$ in effective field theory
论文作者
论文摘要
E1和M1对$^7 \ Mathrm {Be}(p,γ)^8 \ Mathrm {B} $在低能量下的贡献是在Halo有效的场理论中计算的。激发的$^7 \ mathrm {Be}^\ star $ core作为耦合通道计算中的显式自由度包括在内。 E1过渡的计算到近代到领先的顺序。包括M1过渡的主要贡献,在$ 1^+$ $ $ $^8 $ b的狭窄能源区域中提供了重大贡献。我们将结果与以前的Halo有效现场理论计算进行了比较,该计算还包括$^7 \ Mathrm {Be}^\ Star $作为显式自由度。我们在正式表达式和分析中都不同意这些先前的计算。数据的贝叶斯推断给出$ s_ {17}(0)= 21.0(7)$ eV B与预期理论错误结合使用。
The E1 and M1 contributions to $^7\mathrm{Be}(p,γ)^8\mathrm{B}$ at low energies are calculated in halo effective field theory. The excited $^7\mathrm{Be}^\star$ core is included as an explicit degree of freedom in a coupled-channels calculation. The E1 transition is calculated up to next-to-next-to-leading order. The leading contribution from M1 transition that gives significant contribution in a narrow energy region around the $1^+$ resonance state of $^8$B is included. We compare our results with previous halo effective field theory calculations that also included the $^7\mathrm{Be}^\star$ as an explicit degree of freedom. We disagree with these previous calculations in both the formal expressions and also in the analysis. Bayesian inference of the data gives $S_{17}(0)=21.0(7)$ eV b when combined with the expected theory error.