论文标题

神经系统解码:(联合国)具有谓词逻辑约束的监督神经文本生成

NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints

论文作者

Lu, Ximing, West, Peter, Zellers, Rowan, Bras, Ronan Le, Bhagavatula, Chandra, Choi, Yejin

论文摘要

有条件的文本生成通常需要词汇约束,即,在输出文本中应该或不应该包含哪些单词。虽然有条件文本生成的主要配方是在特定于任务的培训数据上进行填补的大规模预处理的语言模型,但即使在大量特定于任务的示例进行监督的情况下,这种模型也不会学会可靠地遵循潜在的约束。 我们提出了神经系统解码,这是一种简单而有效的算法,它使神经语言模型(无论是否受到监督)能够产生流利的文本,同时满足复杂的词汇约束。我们的方法强大而有效。它处理在谓词逻辑下表达的任何词汇约束,而其渐近运行时则等同于常规光束搜索。 四个基准测试的经验结果表明,神经学解码优于先前的方法,包括处理我们约束子集的算法。此外,我们发现,具有神经系统解码的无监督模型通常超过具有常规解码的监督模型,即使后者基于相当大的网络。我们的结果表明,大规模神经网络的限制可用于细粒度可控生成和推理时间算法的希望。

Conditional text generation often requires lexical constraints, i.e., which words should or shouldn't be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples. We propose NeuroLogic Decoding, a simple yet effective algorithm that enables neural language models -- supervised or not -- to generate fluent text while satisfying complex lexical constraints. Our approach is powerful yet efficient. It handles any set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent to conventional beam search. Empirical results on four benchmarks show that NeuroLogic Decoding outperforms previous approaches, including algorithms that handle a subset of our constraints. Moreover, we find that unsupervised models with NeuroLogic Decoding often outperform supervised models with conventional decoding, even when the latter is based on considerably larger networks. Our results suggest the limit of large-scale neural networks for fine-grained controllable generation and the promise of inference-time algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源