论文标题

库拉莫托大道系统中的不规则集体动态

Irregular collective dynamics in a Kuramoto-Daido system

论文作者

Clusella, Pau, Politi, Antonio

论文摘要

我们分析了通过成对相互作用耦合的库拉莫托 - 达多类型相位振荡者的平均场模型的集体行为,这些相互作用取决于相位差异:耦合函数由三个谐波组成。我们提供了令人信服的证据,证明了短暂但持久的混乱集体混乱,该混乱始终处于热力学极限。通过确定最大Lyapunov指数并评估横向稳定性,在巧妙的直接数值模拟的帮助下,分析了该制度。最终用分辨率依赖性熵来描述不变度量的结构。

We analyse the collective behavior of a mean-field model of phase-oscillators of Kuramoto-Daido type coupled through pairwise interactions which depend on phase differences: the coupling function is composed of three harmonics. We provide convincing evidence of a transient but long-lasting chaotic collective chaos, which persists in the thermodynamic limit. The regime is analysed with the help of clever direct numerical simulations, by determining the maximum Lyapunov exponent and assessing the transversal stability to the self-consistent mean field. The structure of the invariant measure is finally described in terms of a resolution-dependent entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源