论文标题
由分数衍射和竞争非线性支撑的亚稳态孤子项链
Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities
论文作者
论文摘要
我们证明,其特征在于其Lévy索引的特征,以圆形的孤子簇(“项链”)携带轨道角动量。它们可以在各自的光学设置中构建,作为由涡旋相位场连接的基本孤子的圆形链。我们半分析地预测,亚稳态项链形的簇持续存在,对应于群集中相邻孤子之间相互作用的有效相互作用的局部最小值。系统的模拟证实了簇在极大的传播距离上保持强大的稳定性,即使存在强大的随机扰动。
We demonstrate that fractional cubic-quintic nonlinear Schrödinger equation,characterized by its Lévy index, maintains ring-shaped soliton clusters ("necklaces") carrying orbital angular momentum. They can be built, in the respective optical setting, as circular chains of fundamental solitons linked by a vortical phase field. We predict semi-analytically that the metastable necklace-shaped clusters persist, corresponding to a local minimum of an effective potential of interaction between adjacent solitons in the cluster. Systematic simulations corroborate that the clusters stay robust over extremely large propagation distances, even in the presence of strong random perturbations.