论文标题
在慢速及以后的数值建模随机通货膨胀
Numerically modeling stochastic inflation in slow-roll and beyond
论文作者
论文摘要
我们在从亚膨胀模式的随机校正的影响下呈现了通货膨胀动力学的完整数值处理。我们讨论如何精确地模拟由亚之间的量子模式产生的随机噪声项,这些量子模式以随机微分方程的形式产生粗粒颗粒的通气动力学。随机微分方程在离散时间网格上逐个事件求解。然后,我们通过使用Mukhanov-Sasaki方程计算的功率谱来计算可以将曲率扰动的功率谱与通过量量化Efflaton波动进行量化的功率谱进行比较。我们的数值程序有助于我们轻松地将形式主义扩展到超慢滚通膨胀,并研究原始黑洞形成的可能性。
We present a complete numerical treatment of inflationary dynamics under the influence of stochastic corrections from sub-Hubble modes. We discuss how to exactly model the stochastic noise terms arising from the sub-Hubble quantum modes that give rise to the coarse-grained inflaton dynamics in the form of stochastic differential equations. The stochastic differential equations are solved event-by-event on a discrete time grid. We then compute the power spectrum of curvature perturbations that can be compared with the power spectrum computed in the traditional fashion using the Mukhanov-Sasaki equation by canonically quantizing the inflaton fluctuations. Our numerical procedure helps us to easily extend the formalism to ultra slow-roll inflation and study the possibility of primordial black hole formation.