论文标题
由原子收敛流形成的多相星际培养基的宏观特性中的双峰行为和收敛要求
Bimodal Behavior and Convergence Requirement in Macroscopic Properties of the Multiphase Interstellar Medium Formed by Atomic Converging Flows
论文作者
论文摘要
我们系统地执行了温暖中性培养基(WNM)的20 km S^-1融合流的流体动力学模拟,以计算冷中性培养基(CNM)的形成,尤其是重点关注多相星际介质(ISM)的平均特性(ISM),例如平均冲击前置和10 pc尺度上的平均密度。我们的结果表明,这些平均特性中的收敛性需要0.02 PC的空间分辨率,该空间分辨率可以分辨出热不稳定中性培养基(UNM)的冷却长度,以遵循从WNM到CNM的动态凝结。我们还发现,取决于上游WNM密度波动的幅度(= SQRT(<drho^2>)/rho_0)的两个不同的后冲击状态出现在平均特性中。当幅度> 10%时,冲击与密度不均匀性之间的相互作用导致震颤后湍流> 3 km S^-1的强烈驱动,这在冲击压缩层中占主导地位。湍流通过冷却和以下CNM形成阻止动态冷凝,并且CNM质量分数保持在〜45%。相反,当振幅<= 10%时,冲击锋将几乎直的几何形状和CNM形成有效地进行,从而导致CNM质量分数约为70%。速度分散剂仅限于2-3 km S^-1的热含量介导水平,并且该层同样由湍流和热能支撑。我们还提出了一个有效的状态方程,该方程将模拟由WNM收敛流形成的多相ISM作为单相ISM。
We systematically perform hydrodynamics simulations of 20 km s^-1 converging flows of the warm neutral medium (WNM) to calculate the formation of the cold neutral medium (CNM), especially focusing on the mean properties of the multiphase interstellar medium (ISM), such as the average shock front position and the mean density on a 10 pc scale. Our results show that the convergence in those mean properties requires 0.02 pc spatial resolution that resolves the cooling length of the thermally unstable neutral medium (UNM) to follow the dynamical condensation from the WNM to CNM. We also find that two distinct post-shock states appear in the mean properties depending on the amplitude of the upstream WNM density fluctuation (= sqrt(<drho^2>)/rho_0). When the amplitude > 10 %, the interaction between shocks and density inhomogeneity leads to a strong driving of the post-shock turbulence of > 3 km s^-1, which dominates the energy budget in the shock-compressed layer. The turbulence prevents the dynamical condensation by cooling and the following CNM formation, and the CNM mass fraction remains as ~ 45 %. In contrast, when the amplitude <= 10 %, the shock fronts maintain an almost straight geometry and CNM formation efficiently proceeds, resulting in the CNM mass fraction of ~ 70 %. The velocity dispersion is limited to the thermal-instability mediated level of 2 - 3 km s^-1 and the layer is supported by both turbulent and thermal energy equally. We also propose an effective equation of state that models the multiphase ISM formed by the WNM converging flow as a one-phase ISM.