论文标题
常规多边形和柏拉图固体的循环平均值
Cyclic Averages of Regular Polygons and Platonic Solids
论文作者
论文摘要
引入了常规多边形$ p_n $和柏拉图固体$ t_n $的循环平均值的概念。结果表明,对于各种$ p_n(t_n)$,相等幂的循环平均值相同,但它们的数字是$ p_n(t_n)$的特征。鉴于通过$ p_n(t_n)$的顶点和环状平均值的圆(球形)定义(sphere)的定义,建立了$ p_n(t_n)$的共同度量关系。
The concept of the cyclic averages are introduced for a regular polygon $P_n$ and a Platonic solid $T_n$. It is shown that cyclic averages of equal powers are the same for various $P_n(T_n)$, but their number is characteristic of $P_n(T_n)$. Given the definition of a circle (sphere) by the vertices of $P_n(T_n)$ and on the base of the cyclic averages are established the common metrical relations of $P_n(T_n)$.