论文标题
从M-branes的广告$ _3 $以锥形奇异性
AdS$_3$ from M-branes at conical singularities
论文作者
论文摘要
已知M理论具有超对称解决方案,其中几何形状为$ \ mathrm {ads} _3 \ times s^3 \ times s^3 $ s^3 $在Riemann Surface $σ_{2} $上翘曲。可以通过将M2和M5 Branes作为背景M5 Branes的堆栈中的缺陷来设计,可以通过将M2和M5麸皮放置为最简单的示例。在本文中,我们表明,这种结构的概括在上述类别中产生了更一般的解决方案。背景麸皮现在是M5的携带M2 brane电荷,而缺陷麸皮现在放置在带有圆锥形缺陷的平面超平面的起源处。运动方程意味着锥形缺陷产生的赤字角与背景麸皮携带的M2电荷之间的关系。
M-theory is known to possess supersymmetric solutions where the geometry is $\mathrm{AdS}_3\times S^3\times S^3$ warped over a Riemann surface $Σ_{2}$. The simplest examples in this class can be engineered by placing M2 and M5 branes as defects inside of a stack of background M5 branes. In this paper we show that a generalization of this construction yields more general solutions in the aforementioned class. The background branes are now M5's carrying M2 brane charge, while the defect branes are now placed at the origin of a flat hyperplane with a conical defect. The equations of motion imply a relation between the deficit angle produced by the conical defect and the M2 charge carried by the background branes.