论文标题
通过分布强大的优化应对标签移动
Coping with Label Shift via Distributionally Robust Optimisation
论文作者
论文摘要
标签移位问题是指火车和测试标签分布不匹配的监督学习设置。现有的解决标签偏移的工作通常假设访问\ emph {未标记}测试样本。该样本可用于估计测试标签分布,然后训练适当的重新加权分类器。尽管使用此想法的方法已被证明有效,但它们的范围是有限的,因为访问目标域并不总是可行的;此外,如果要在\ emph {多}测试环境中部署该模型,则需要重复进行重复进行重复。相反,一个人可以学习一个\ emph {single}分类器,该分类器可用于任意标签从广阔的家庭转移?在本文中,我们通过提出一个模型来回答这个问题,该模型可以最大程度地限制基于分配强大优化(DRO)的目标。然后,我们设计和分析了针对大规模问题量身定制的梯度下降镜上升算法,以优化所提出的目标。 %,并确定其融合。最后,通过对CIFAR-100和Imagenet的实验,我们表明我们的技术可以在存在标签移位的设置中显着提高许多基线的性能。
The label shift problem refers to the supervised learning setting where the train and test label distributions do not match. Existing work addressing label shift usually assumes access to an \emph{unlabelled} test sample. This sample may be used to estimate the test label distribution, and to then train a suitably re-weighted classifier. While approaches using this idea have proven effective, their scope is limited as it is not always feasible to access the target domain; further, they require repeated retraining if the model is to be deployed in \emph{multiple} test environments. Can one instead learn a \emph{single} classifier that is robust to arbitrary label shifts from a broad family? In this paper, we answer this question by proposing a model that minimises an objective based on distributionally robust optimisation (DRO). We then design and analyse a gradient descent-proximal mirror ascent algorithm tailored for large-scale problems to optimise the proposed objective. %, and establish its convergence. Finally, through experiments on CIFAR-100 and ImageNet, we show that our technique can significantly improve performance over a number of baselines in settings where label shift is present.