论文标题

深卷积神经网络基于脑MRI图像中基于模型的脑肿瘤检测

Deep Convolutional Neural Networks Model-based Brain Tumor Detection in Brain MRI Images

论文作者

Siddique, Md. Abu Bakr, Sakib, Shadman, Khan, Mohammad Mahmudur Rahman, Tanzeem, Abyaz Kader, Chowdhury, Madiha, Yasmin, Nowrin

论文摘要

多年来,借助于磁共振成像(MRI)诊断脑肿瘤(MRI)已获得巨大的突出,主要是在医学领域。仅借助于MR成像来检测和/或分区,以巨大的时间和精力来实现,并要求从敬业的人员那里获得很多专业知识。这证实了制造自主模型脑肿瘤诊断的必要性。我们的工作涉及实施深层卷积神经网络(DCNN),以诊断从MR图像中诊断脑肿瘤。本文使用的数据集由253个脑部MR图像组成,其中据报道有155张图像具有肿瘤。我们的模型可以以96%的总体精度挑出MR图像。该模型的表现优于测试数据集中诊断脑肿瘤的现有常规方法(精度= 0.93,灵敏度= 1.00,F1得分= 0.97)。此外,拟议模型的平均Precision-Recall得分为0.93,Cohen的Kappa 0.91和AUC 0.95。因此,提出的模型可以帮助临床专家验证患者是否患有脑肿瘤,从而加速治疗程序。

Diagnosing Brain Tumor with the aid of Magnetic Resonance Imaging (MRI) has gained enormous prominence over the years, primarily in the field of medical science. Detection and/or partitioning of brain tumors solely with the aid of MR imaging is achieved at the cost of immense time and effort and demands a lot of expertise from engaged personnel. This substantiates the necessity of fabricating an autonomous model brain tumor diagnosis. Our work involves implementing a deep convolutional neural network (DCNN) for diagnosing brain tumors from MR images. The dataset used in this paper consists of 253 brain MR images where 155 images are reported to have tumors. Our model can single out the MR images with tumors with an overall accuracy of 96%. The model outperformed the existing conventional methods for the diagnosis of brain tumor in the test dataset (Precision = 0.93, Sensitivity = 1.00, and F1-score = 0.97). Moreover, the proposed model's average precision-recall score is 0.93, Cohen's Kappa 0.91, and AUC 0.95. Therefore, the proposed model can help clinical experts verify whether the patient has a brain tumor and, consequently, accelerate the treatment procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源