论文标题
某些高斯田地的本地衍生物II
Derivatives of local times for some Gaussian fields II
论文作者
论文摘要
给定一个$(2,d)$ - 高斯字段\ [z = \ big \ {z(t,s)= x^{h_1} _t- _t - \ tilde {x}^{x}^{ $ \ tilde {x}^{h_2} $是独立的$ d $ - 二维为中心的高斯流程满足某些属性,我们将为存在$ z $的本地时间的衍生物提供必要的条件。
Given a $(2,d)$-Gaussian field \[ Z=\big\{ Z(t,s)= X^{H_1}_t -\tilde{X}^{H_2}_s, s,t \ge 0\big\}, \] where $X^{H_1}$ and $\tilde{X}^{H_2}$ are independent $d$-dimensional centered Gaussian processes satisfying certain properties, we will give the necessary condition for existence of derivatives of the local time of $Z$.