论文标题
使用基于反向速度的轨迹计划的线性异质双曲线ode-PDE系统的故障诊断
Fault diagnosis for linear heterodirectional hyperbolic ODE-PDE systems using backstepping-based trajectory planning
论文作者
论文摘要
本文涉及通用线性异质双曲线ODE-PDE系统的故障诊断问题。在存在干扰的情况下,提出了一个系统的解决方案,用于添加时间变化的执行器,过程和传感器故障。故障和干扰由有限维信号模型的解决方案表示,这可以考虑大量信号。对于仅有界的干扰,得出了安全断层诊断的阈值。通过将积分转换应用于系统,可以在有限时间内实现代数故障检测方程来检测故障。相应的积分内核是由于实现了非平衡初始状态与双曲线ODE-PDE系统消失的最终状态之间的有限时间过渡而产生的。对于这个新的具有挑战性的问题,提出了一种系统的轨迹计划方法。特别是,通过将内核方程映射到后台坐标并将过渡问题的解决方案映射到简单的轨迹计划中,可以促进此问题。 $ 4 \ times 4 $异质双曲线系统的故障诊断与二阶ODE相结合,证明了本文的结果。
This paper is concerned with the fault diagnosis problem for general linear heterodirectional hyperbolic ODE-PDE systems. A systematic solution is presented for additive time-varying actuator, process and sensor faults in the presence of disturbances. The faults and disturbances are represented by the solutions of finite-dimensional signal models, which allow to take a large class of signals into account. For disturbances, that are only bounded, a threshold for secured fault diagnosis is derived. By applying integral transformations to the system an algebraic fault detection equation to detect faults in finite time is obtained. The corresponding integral kernels result from the realization of a finite-time transition between a non-equilibrium initial state and a vanishing final state of a hyperbolic ODE-PDE system. For this new challenging problem, a systematic trajectory planning approach is presented. In particular, this problem is facilitated by mapping the kernel equations into backstepping coordinates and tracing the solution of the transition problem back to a simple trajectory planning. The fault diagnosis for a $4\times 4$ heterodirectional hyperbolic system coupled with a second order ODE demonstrates the results of the paper.