论文标题
合奏平均值,泊松过程和微晶格
Ensemble averages, Poisson processes and Microstates
论文作者
论文摘要
我们考虑使用离散随机变量的合奏平均理论。我们提出了一个合适的措施来完成整体平均值。我们还提供了关于泊松点过程的这种合奏平均值的数学描述。此外,我们证明,这种类型的平均理论具有等效的描述,即以单个显微镜理论的适当连续限制在显微镜自由度的一部分中追踪。可以通过Liouville重力来识别这两种方法的结果,我们进一步解决了对微观理论的一些含义,包括从平均理论的角度来寻找量子效应的场所。还讨论了对其他点过程的概括。
We consider ensemble averaged theories with discrete random variables. We propose a suitable measure to do the ensemble average. We also provide a mathematical description of such ensemble averages of theories in terms of Poisson point processes. Moreover, we demonstrate that averaging theories of this type has an equivalent description as tracing over parts of the microscopic degrees of freedom in a suitable continuous limit of a single microscopic theory. The results from both approaches can be identified with Liouville gravity, of which we further address some implications on the microscopic theory, including venues to look for quantum effects from the view point of the averaged theory. Generalizations to other point processes are also discussed.