论文标题
彩色homfly-ppt torus结的多项式的扩展的Ooguri-Vafa分区功能的拓扑递归
Topological Recursion for the extended Ooguri-Vafa partition function of colored HOMFLY-PT polynomials of torus knots
论文作者
论文摘要
我们证明,拓扑递归应用于彩色结节的彩色homfly-pt多项式的光谱曲线,再现了称为扩展的Ooguri-Vafa分区功能的特定分区函数的N点功能。这概括并完善了Brini-Eynard-Marino和Borot-eynard-orentin的结果。 我们还讨论了在这种情况下,光谱曲线拓扑递归的陈述如何符合Alexandrov-Chapuy-Eynard-Harnad的计划,以建立一般加权双Hurwitz数字分区函数的拓扑递归(A.K.A. kp tau tau tau tau tau tau tau tau tau tau tau tau tau of Mydereposit类型)。
We prove that topological recursion applied to the spectral curve of colored HOMFLY-PT polynomials of torus knots reproduces the n-point functions of a particular partition function called the extended Ooguri-Vafa partition function. This generalizes and refines the results of Brini-Eynard-Marino and Borot-Eynard-Orantin. We also discuss how the statement of spectral curve topological recursion in this case fits into the program of Alexandrov-Chapuy-Eynard-Harnad of establishing the topological recursion for general weighted double Hurwitz numbers partition functions (a.k.a. KP tau-functions of hypergeometric type).