论文标题

LCD-线聚类和位置识别的描述

LCD -- Line Clustering and Description for Place Recognition

论文作者

Taubner, Felix, Tschopp, Florian, Novkovic, Tonci, Siegwart, Roland, Furrer, Fadri

论文摘要

当前对视觉位置识别的研究主要集中在将图像的局部视觉特征汇总为单个向量表示。因此,通常会丢失高级信息,例如特征的几何布置。在本文中,我们介绍了一种基于学习的新方法来放置识别,并使用RGB-D摄像机和线簇作为视觉和几何特征。我们指出,位置识别问题是识别线簇而不是单个贴片的问题,从而维护结构信息。在我们的工作中,线簇被定义为组成单个对象的线,因此我们的位置识别方法可以理解为对象识别。使用最新技术在RGB-D图像中检测到3D线段。我们基于框架线聚类的注意机制提出神经网络体系结构。类似的神经网络用于描述这些簇,紧凑的嵌入为128个浮点数,并在从Interiornet数据集获得的训练数据上训练了三胞胎损失。我们在大量室内场景上展示了实验,并使用SIFT和SUPERPOINT功能以及全局描述符NetVlad将我们的方法与单词袋进行了图像回归方法。我们的方法仅对合成数据进行了培训,因此可以很好地推广到使用Kinect传感器捕获的现实世界数据,同时还提供了有关实例几何布置的信息。

Current research on visual place recognition mostly focuses on aggregating local visual features of an image into a single vector representation. Therefore, high-level information such as the geometric arrangement of the features is typically lost. In this paper, we introduce a novel learning-based approach to place recognition, using RGB-D cameras and line clusters as visual and geometric features. We state the place recognition problem as a problem of recognizing clusters of lines instead of individual patches, thus maintaining structural information. In our work, line clusters are defined as lines that make up individual objects, hence our place recognition approach can be understood as object recognition. 3D line segments are detected in RGB-D images using state-of-the-art techniques. We present a neural network architecture based on the attention mechanism for frame-wise line clustering. A similar neural network is used for the description of these clusters with a compact embedding of 128 floating point numbers, trained with triplet loss on training data obtained from the InteriorNet dataset. We show experiments on a large number of indoor scenes and compare our method with the bag-of-words image-retrieval approach using SIFT and SuperPoint features and the global descriptor NetVLAD. Trained only on synthetic data, our approach generalizes well to real-world data captured with Kinect sensors, while also providing information about the geometric arrangement of instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源