论文标题

Schrödinger操作员特征值的定量稳定性,定量浴缸原理\&在收费公路属性中应用于双线性最佳控制问题

Quantitative stability for eigenvalues of Schrödinger operator, Quantitative bathtub principle \& Application to the turnpike property for a bilinear optimal control problem

论文作者

Mazari, Idriss, Ruiz-Balet, Domenec

论文摘要

这项工作与我们从定性的角度解决的两个优化问题有关。第一个涉及通用域中Schrödinger运算符的频谱优化问题的定量不等式,第二个涉及收费公路属性,以解决最佳的双线性控制问题。在本文的第一部分中,我们在温和的技术假设下证明了针对潜在的$ v $的第一个特征值的定量不平等,以优化$-Δ-V $的第一个特征值,而在$ l^\ infty $和$ l^1 $限制下。这是使用一种新的证明方法来完成的,该方法以定量浴缸原理为至关重要的方式依赖。我们认为,我们容易概括其他稳定的椭圆优化问题。在本文的第二部分中,我们使用这种不平等来解决收费公路问题。即,考虑到表格的双线性控制系统$ u_t-Δu= \ nathcal v u $,$ \ nathcal v = \ nathcal v(t,x)$是控制,我们可以提供定性信息,在$ l^\ infty $和$ l^1 $下,对$ \ nathcal v $的$ \ mathcal v $,在$ \ mathcal v $上的最佳问题, \int_Ωu(t,x)dx $?我们证明,特征值的定量不平等意味着一个积分的收费公路属性:将$ \ Mathcal I^*$定义为特征值优化问题的最佳潜力集和$ \ MATHCAL V_T^*$作为BiLinear最佳控制问题的解决方案,量\ operatoTorname {dist} _ {l^1}(\ Mathcal v_t^*(t,\ cdot)\ ,, \ Mathcal i^*)^2 $在$ t $中均匀地界定。

This work is concerned with two optimisation problems that we tackle from a qualitative perspective. The first one deals with quantitative inequalities for spectral optimisation problems for Schrödinger operators in general domains, the second one deals with the turnpike property for optimal bilinear control problems. In the first part of this article, we prove, under mild technical assumptions, quantitative inequalities for the optimisation of the first eigenvalue of $-Δ-V$ with Dirichlet boundary conditions with respect to the potential $V$, under $L^\infty$ and $L^1$ constraints. This is done using a new method of proof which relies on in a crucial way on a quantitative bathtub principle. We believe our approach susceptible of being generalised to other steady elliptic optimisation problems. In the second part of this paper, we use this inequality to tackle a turnpike problem. Namely, considering a bilinear control system of the form $u_t-Δu=\mathcal V u$, $\mathcal V=\mathcal V(t,x)$ being the control, can we give qualitative information, under $L^\infty$ and $L^1$ constraints on $\mathcal V$, on the solutions of the optimisation problem $\sup \int_Ωu(T,x)dx$? We prove that the quantitative inequality for eigenvalues implies an integral turnpike property: defining $\mathcal I^*$ as the set of optimal potentials for the eigenvalue optimisation problem and $\mathcal V_T^*$ as a solution of the bilinear optimal control problem, the quantity $\int_0^T \operatorname{dist}_{L^1}(\mathcal V_T^*(t,\cdot)\,, \mathcal I^*)^2$ is bounded uniformly in $T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源