论文标题
使用深Q网络和Q学习的强化学习可以准确地将脑肿瘤定位在MRI上,并使用非常小的训练集
Reinforcement learning using Deep Q Networks and Q learning accurately localizes brain tumors on MRI with very small training sets
论文作者
论文摘要
臭名昭著的固有局限性的目的是监督的深度学习:1)它需要大型,手工注册的数据集,2)它是不可替代的,3)它缺乏解释性和直觉。我们最近提出了强化学习来解决所有三分。但是,我们将其应用于带有放射科医生眼镜跟踪点的图像,这限制了状态行动空间。在这里,我们将深Q学习概括为基于网格世界的环境,因此只需要图像和图像掩码。 材料和方法,我们在Brats脑肿瘤数据库的30个二维图像切片上训练了一个深Q网络。每个图像都包含一个病变。然后,我们在单独的30个测试集图像上测试了经过训练的深Q网络。为了进行比较,我们还培训并测试了一个关键点检测监督的深度学习网络,用于相同的培训 /测试图像。 结果虽然有监督的方法迅速过于拟合训练数据,并且在测试集(11 \%精度)上的表现较差,但深Q学习方法显示出在训练时间内逐渐提高了对测试集的综合性,达到70 \%的准确性。 结论我们已经显示了在放射学图像上增强学习的原理化证明,在这里使用2D对比增强的MRI脑图像,目的是定位脑肿瘤。这代表了最近的工作对网格环境的概括,自然适合分析医学图像。
Purpose Supervised deep learning in radiology suffers from notorious inherent limitations: 1) It requires large, hand-annotated data sets, 2) It is non-generalizable, and 3) It lacks explainability and intuition. We have recently proposed Reinforcement Learning to address all threes. However, we applied it to images with radiologist eye tracking points, which limits the state-action space. Here we generalize the Deep-Q Learning to a gridworld-based environment, so that only the images and image masks are required. Materials and Methods We trained a Deep Q network on 30 two-dimensional image slices from the BraTS brain tumor database. Each image contained one lesion. We then tested the trained Deep Q network on a separate set of 30 testing set images. For comparison, we also trained and tested a keypoint detection supervised deep learning network for the same set of training / testing images. Results Whereas the supervised approach quickly overfit the training data, and predicably performed poorly on the testing set (11\% accuracy), the Deep-Q learning approach showed progressive improved generalizability to the testing set over training time, reaching 70\% accuracy. Conclusion We have shown a proof-of-principle application of reinforcement learning to radiological images, here using 2D contrast-enhanced MRI brain images with the goal of localizing brain tumors. This represents a generalization of recent work to a gridworld setting, naturally suitable for analyzing medical images.