论文标题

样品路径大偏差,用于一类重尾马尔可夫添加剂过程

Sample-path large deviations for a class of heavy-tailed Markov additive processes

论文作者

Chen, Bohan, Rhee, Chang-Han, Zwart, Bert

论文摘要

对于由仿射递归驱动的一类添加剂过程$ x_ {n + 1} = a_n x_n + b_n $,我们在$ d [0,1] $的$ M_1'$ topology中开发了一个示例路径大偏差原理。我们允许$ b_n $具有标志,并专注于凯斯滕(Kesten)条件持有$ a_1 $的情况,从而导致重型分布。我们较大的偏差结果中最有可能的路径是阶梯函数,既有正跳跃和负跳。

For a class of additive processes driven by the affine recursion $X_{n+1} = A_n X_n + B_n$, we develop a sample-path large deviations principle in the $M_1'$ topology on $D [0,1]$. We allow $B_n$ to have both signs and focus on the case where Kesten's condition holds on $A_1$, leading to heavy-tailed distributions. The most likely paths in our large deviations results are step functions with both positive and negative jumps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源