论文标题

使用Zernike的相对比方法,在太空冠状器仪器中传感和控制

Wavefront sensing and control in space-based coronagraph instruments using Zernike's phase-contrast method

论文作者

Ruane, Garreth, Wallace, J. Kent, Steeves, John, Prada, Camilo Mejia, Seo, Byoung-Joon, Bendek, Eduardo, Coker, Carl, Chen, Pin, Crill, Brendan, Jewell, Jeff, Kern, Brian, Marx, David, Poon, Phillip K., Redding, David, Riggs, A J Eldorado, Siegler, Nicholas, Zimmer, Robert

论文摘要

带有Coronagraph仪器的未来空间望远镜将使用波前传感器(WFS)来测量和纠正相误差并稳定高对比度图像中的恒星强度。 Habex和Luvoir Mission概念基线是Zernike波前传感器(ZWFS),该传感器(ZWFS)使用Zernike的相对比方法将瞳孔中的相位转换为WFS检测器的强度。为了准备这些潜在的未来任务,我们在NASA的喷气推进实验室的高对比度成像测试台设施中的decadal仪器中实验表明了ZWFS。我们验证ZWF可以使用类似于HABEX和Luvoir概念的配置,可以测量ZWF的低空间频率像差,直至可变形镜的控制极限,表面高度敏感性小至1 pm。此外,我们展示了闭环控制,解决了单个DM执行器,其残差与理论模型一致。此外,我们使用各种光谱类型的天然星光预测了ZWF在未来太空望远镜上的预期性能。最具挑战性的场景需要约1小时的集成时间才能达到生态表敏感性。通过使用内部或外部激光源来传感目的,可以大大降低此时间表。在这里提出的实验结果和理论预测在下一代带有Coronagraph仪器的空间望远镜的背景下推进了WFS技术。

Future space telescopes with coronagraph instruments will use a wavefront sensor (WFS) to measure and correct for phase errors and stabilize the stellar intensity in high-contrast images. The HabEx and LUVOIR mission concepts baseline a Zernike wavefront sensor (ZWFS), which uses Zernike's phase contrast method to convert phase in the pupil into intensity at the WFS detector. In preparation for these potential future missions, we experimentally demonstrate a ZWFS in a coronagraph instrument on the Decadal Survey Testbed in the High Contrast Imaging Testbed facility at NASA's Jet Propulsion Laboratory. We validate that the ZWFS can measure low- and mid-spatial frequency aberrations up to the control limit of the deformable mirror, with surface height sensitivity as small as 1 pm, using a configuration similar to the HabEx and LUVOIR concepts. Furthermore, we demonstrate closed-loop control, resolving an individual DM actuator, with residuals consistent with theoretical models. In addition, we predict the expected performance of a ZWFS on future space telescopes using natural starlight from a variety of spectral types. The most challenging scenarios require ~1 hr of integration time to achieve picometer sensitivity. This timescale may be drastically reduced by using internal or external laser sources for sensing purposes. The experimental results and theoretical predictions presented here advance the WFS technology in the context of the next generation of space telescopes with coronagraph instruments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源