论文标题

Cameron和Kiyota对具有规定价值的尖锐字符的猜想

A conjecture of Cameron and Kiyota on sharp characters with prescribed values

论文作者

Abdollahi, A., Bagherian, J., Khatami, M., Shahbazi, Z., Sobhani, R.

论文摘要

令$χ$为有限组$ g $的虚拟(广义)字符,$ l = l = l(χ)$是$ g- \ lbrace 1 \ rbrace $的$χ$的图像。这对$(g,χ)$据说是$ l $的尖锐,如果$ | g | = \ prod _ {l \ in L}(χ(1) - L)$。如果$ g $的主要特征不是$χ$的不可约组成部分,则对$ $(g,χ)$称为归一化。在本文中,我们首先为卡梅伦和基约塔以1988美元的价格提出的猜想提供了一些反例。该猜想指出,如果$(g,χ)$是尖锐的,并且$ | l | \ geq 2 $,则内部产品$(χ,χ)_g $由$ L $唯一确定。然后,我们证明,如果$(g,χ)$归一化,$χ$是$ g $的字符,而$ l $至少包含至少一个不合理的值,那么这个猜想是正确的。

Let $ χ$ be a virtual (generalized) character of a finite group $ G $ and $ L=L(χ)$ be the image of $ χ$ on $ G-\lbrace 1 \rbrace $. The pair $ (G, χ) $ is said to be sharp of type $ L $ if $|G|=\prod _{ l \in L} (χ(1) - l) $. If the principal character of $G$ is not an irreducible constituent of $χ$, the pair $(G,χ)$ is called normalized. In this paper, we first provide some counterexamples to a conjecture that was proposed by Cameron and Kiyota in $1988$. This conjecture states that if $(G,χ)$ is sharp and $|L|\geq 2$, then the inner product $(χ,χ)_G$ is uniquely determined by $ L $. We then prove that this conjecture is true in the case that $(G,χ) $ is normalized, $χ$ is a character of $ G $, and $ L $ contains at least an irrational value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源