论文标题

人造自旋网络中的可调随机性

Tunable stochasticity in an artificial spin network

论文作者

Sanz-Hernández, Dédalo, Massouras, Maryam, Reyren, Nicolas, Rougemaille, Nicolas, Schánilec, Vojtěch, Bouzehouane, Karim, Hehn, Michel, Canals, Benjamin, Querlioz, Damien, Grollier, Julie, Montaigne, François, Lacour, Daniel

论文摘要

超材料提出了通过工程内部结构人为地产生高级功能的可能性。人造自旋网络将大量的纳米级磁元素耦合在一起,这是有希望的超材料候选者,可以通过调整元素之间的局部相互作用来控制集体磁性行为。在这项工作中,人造自旋网络中磁性域壁的运动导致超材料的可调随机响应,该反应可以通过外部磁场和局部晶格修改来定制。这种类型的可调随机网络会产生可控的随机响应,从而利用纳米级磁性域壁运动中的内在随机性。用于说明随机性控制的标志性演示是Galton板。在此系统中,多个球落入一系列钉子中,以生成钟形曲线,该曲线可以通过阵列间距或板的倾斜来修改。使用人工自旋网络对该实验进行纳米级娱乐活动来证明可调的随机性。这种可调的随机网络为炮弹后计算体系结构(例如贝叶斯传感或随机神经网络)开辟了新的路径,在该体系结构中进行了随机性,以便有效地执行复杂的计算任务。

Metamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications. This type of tunable stochastic network produces a controllable random response exploiting intrinsic stochasticity within magnetic domain-wall motion at the nanoscale. An iconic demonstration used to illustrate the control of randomness is the Galton board. In this system, multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified via the array spacing or the tilt of the board. A nanoscale recreation of this experiment using an artificial spin network is employed to demonstrate tunable stochasticity. This type of tunable stochastic network opens new paths towards post-Von Neumann computing architectures such as Bayesian sensing or random neural networks, in which stochasticity is harnessed to efficiently perform complex computational tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源