论文标题

拐角处状态的确切的高阶散装对应关系

Exact Higher-order Bulk-boundary Correspondence of Corner-localized States

论文作者

Jung, Minwoo, Yu, Yang, Shvets, Gennady

论文摘要

我们证明,在绝缘域的角落存在局部状态,并不总是预测某些非平凡的高阶拓扑不变性,即使它们似乎在同一汉密尔顿参数空间中共存。我们对$ C^n $ - 合成的晶体绝缘子及其多层堆栈的分析表明,拓扑角状态不一定与其他成熟的高阶边界可观察物(例如分数角电荷或填充异常)相关。例如,在一个$ c^3 $ - 对称的呼吸kagome晶格中,我们表明,成功预测分数角异常的散装极化未能成为零能量角状态的相关拓扑不变性。相反,这些角状态可以通过拓扑边缘的装饰来精确解释。此外,尽管零能量的角状态在$ c^4 $ - 对称拓扑结晶绝缘子长期以来一直被认为是四分之一填充时批量极化的结果,但我们通过在半填充和建立精确的散装堆积物相应的情况下引入适当的散装不变来纠正这种误解。通过在二维拓扑晶体绝缘子中完善几个散装的对应关系,我们的工作激发了进一步发展严格的理论基础,以将角状态的存在与宿主材料的高阶拓扑相关联。

We demonstrate that the presence of a localized state at the corner of an insulating domain is not always a predictor of a certain non-trivial higher-order topological invariant, even though they appear to co-exist in the same Hamiltonian parameter space. Our analysis of $C^n$-symmetric crystalline insulators and their multi-layer stacks reveals that topological corner states are not necessarily correlated with other well-established higher-order boundary observables, such as fractional corner charge or filling anomaly. In a $C^3$-symmetric breathing Kagome lattice, for example, we show that the bulk polarization, which successfully predicts the fractional corner anomaly, fails to be the relevant topological invariant for zero-energy corner states; instead, these corner states can be exactly explained by the decoration of topological edges. Also, while the zero-energy corner states in $C^4$-symmetric topological crystalline insulators have long been conjectured to be the result of the bulk polarization at quarter-filling, we correct this misconception by introducing a proper bulk invariant at half-filling and establishing a precise bulk-corner correspondence. By refining several bulk-corner correspondences in two-dimensional topological crystalline insulators, our work motivates further development of rigorous theoretical grounds for associating the existence of corner states with higher-order topology of host materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源