论文标题
强大的分数选择$ 3 $ - 选择性关键图形
The strong fractional choice number of $3$-choice critical graphs
论文作者
论文摘要
如果$ g $不是$ 2 $ -Choosable,则图$ G $称为$ 3 $ - 选择至关重要的,但是任何适当的子图都是$ 2 $ - choosable。如果$ g $是$(a,b)$ - 对于所有正整数$ a,b $,则图形$ g $是强烈的分数$ r $ choosable,如果$ g $(a,b)$ - $ a/b \ ge r $。 $ g $的强部分选择数为$ ch_f^s(g)= \ inf \ {r:g $是强烈的分数$ r $ -Choosable $ \} $。本文确定了所有$ 3 $选择关键图的强大分数选择数。
A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A graph $G$ is strongly fractional $r$-choosable if $G$ is $(a,b)$-choosable for all positive integers $a,b$ for which $a/b \ge r$. The strong fractional choice number of $G$ is $ch_f^s(G) = \inf \{r: G $ is strongly fractional $r$-choosable$\}$. This paper determines the strong fractional choice number of all $3$-choice critical graphs.