论文标题

Claw U-NET:一个基于UNET的网络,具有深度特征串联的巩膜血管分割

Claw U-Net: A Unet-based Network with Deep Feature Concatenation for Scleral Blood Vessel Segmentation

论文作者

Yao, Chang, Tang, Jingyu, Hu, Menghan, Wu, Yue, Guo, Wenyi, Li, Qingli, Zhang, Xiao-Ping

论文摘要

Sturge-Weber综合征(SWS)是一种血管畸形疾病,如果患者的病情严重,可能会导致失明。临床结果表明,根据巩膜血管的特征,可以将SWS分为两种类型。因此,如何准确细分巩膜血管已成为计算机辅助诊断的重大问题。在这项研究中,我们建议将底层的特征图持续采样,以保留图像细节,并根据UNET设计一种新型的爪子UNET,以用于巩膜血管分割。具体而言,剩余结构用于增加特征提取阶段的网络层数,以了解更深的特征。在解码阶段,通过融合编码,抬高和解码零件的特征,爪子UNET可以在巩膜血管的细粒区域中实现有效的分割。为了有效提取小血管,我们使用注意机制来计算图像中每个位置的注意力系数。 Claw UNET在硬化血管图像数据集上的其他基于UNET的网络优于其他基于UNET的网络。

Sturge-Weber syndrome (SWS) is a vascular malformation disease, and it may cause blindness if the patient's condition is severe. Clinical results show that SWS can be divided into two types based on the characteristics of scleral blood vessels. Therefore, how to accurately segment scleral blood vessels has become a significant problem in computer-aided diagnosis. In this research, we propose to continuously upsample the bottom layer's feature maps to preserve image details, and design a novel Claw UNet based on UNet for scleral blood vessel segmentation. Specifically, the residual structure is used to increase the number of network layers in the feature extraction stage to learn deeper features. In the decoding stage, by fusing the features of the encoding, upsampling, and decoding parts, Claw UNet can achieve effective segmentation in the fine-grained regions of scleral blood vessels. To effectively extract small blood vessels, we use the attention mechanism to calculate the attention coefficient of each position in images. Claw UNet outperforms other UNet-based networks on scleral blood vessel image dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源