论文标题
广义随机微观学模型:主要配方
The Generalized Stochastic Microdosimetric Model: the main formulation
论文作者
论文摘要
目前的工作引入了一个严格的随机模型,称为广义随机微观学模型(GSM2),以描述通过电离辐射引起的生物学损害。从组织中的能量沉积的微观计光谱开始,我们得出了一个主方程,描述了致命的概率密度功能的时间演变,并可能由细胞核中的辐射引起的致命性DNA损伤。不需要结果的概率分布来满足任何先验假设。此外,我们概括了主方程,以考虑连续剂量递送引起的损害。另外,已经考虑了核内部的空间特征和损伤运动。在此过程中,我们提供了一个一般的数学环境,以充分描述细胞核中时空损伤的形成和进化。最后,我们提供了利用蒙特卡洛模拟的主方程的数值解,以验证GSM2的准确性。 GSM2的发展可以改善对肿瘤和正常组织的辐射损伤的建模,从而影响治疗方案,以改善肿瘤控制和降低正常组织毒性。
The present work introduces a rigorous stochastic model, named Generalized Stochastic Microdosimetric Model (GSM2), to describe biological damage induced by ionizing radiation. Starting from microdosimetric spectra of energy deposition in tissue, we derive a master equation describing the time evolution of the probability density function of lethal and potentially lethal DNA damage induced by radiation in a cell nucleus. The resulting probability distribution is not required to satisfy any a priori assumption. Furthermore, we generalized the master equation to consider damage induced by a continuous dose delivery. In addition, spatial features and damage movement inside the nucleus have been taken into account. In doing so, we provide a general mathematical setting to fully describe the spatiotemporal damage formation and evolution in a cell nucleus. Finally, we provide numerical solutions of the master equation exploiting Monte Carlo simulations to validate the accuracy of GSM2. Development of GSM2 can lead to improved modeling of radiation damage to both tumor and normal tissues, and thereby impact treatment regimens for better tumor control and reduced normal tissue toxicities.