论文标题

基于区域特定词典学习的低剂量胸CT重建

Region-specific Dictionary Learning-based Low-dose Thoracic CT Reconstruction

论文作者

Xu, Qiong, Wang, Jeff, Shirato, Hiroki, Xing, Lei

论文摘要

本文提出了一种基于词典学习的方法,该方法具有特定于区域的图像贴片,以最大程度地利用用于CT图像重建功能强大的稀疏数据处理技术的实用性。考虑到CT中图像特征和噪声的异质分布,在迭代重建中使用了字典的特定区域定制。胸部CT图像根据其结构和噪声特征将几个区域分为几个区域。然后从分段的胸部CT图像中学到特定于每个区域的字典,并应用于该区域的后续图像重建。词典学习和稀疏表示的参数是根据每个区域的结构和噪声特性确定的。提出的方法比基于单个词典恢复结构和抑制模拟和人类CT成像中的噪声的常规重建相比,导致更高的性能。定量地,模拟研究显示,就结构相似度(SSIM)和根平方误差(RMSE)指数而言,整个胸部的图像质量的最大改善可以达到4.88%和11.1%。对于人类成像数据,发现可以更好地恢复肺和心脏中的结构,同时有效地降低椎骨周围的噪声。提出的策略考虑了重建对象内部内部的固有区域差异,并导致改进的图像。该方法可以很容易地扩展到其他解剖区域和其他应用的CT成像。

This paper presents a dictionary learning-based method with region-specific image patches to maximize the utility of the powerful sparse data processing technique for CT image reconstruction. Considering heterogeneous distributions of image features and noise in CT, region-specific customization of dictionaries is utilized in iterative reconstruction. Thoracic CT images are partitioned into several regions according to their structural and noise characteristics. Dictionaries specific to each region are then learned from the segmented thoracic CT images and applied to subsequent image reconstruction of the region. Parameters for dictionary learning and sparse representation are determined according to the structural and noise properties of each region. The proposed method results in better performance than the conventional reconstruction based on a single dictionary in recovering structures and suppressing noise in both simulation and human CT imaging. Quantitatively, the simulation study shows maximum improvement of image quality for the whole thorax can achieve 4.88% and 11.1% in terms of the Structure-SIMilarity (SSIM) and Root-Mean-Square Error (RMSE) indices, respectively. For human imaging data, it is found that the structures in the lungs and heart can be better recovered, while simultaneously decreasing noise around the vertebra effectively. The proposed strategy takes into account inherent regional differences inside of the reconstructed object and leads to improved images. The method can be readily extended to CT imaging of other anatomical regions and other applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源