论文标题
SmartTriage:一种用于个性化患者数据捕获,文档生成和决策支持的系统
SmartTriage: A system for personalized patient data capture, documentation generation, and decision support
论文作者
论文摘要
症状检查器已成为收集症状和诊断患者的重要工具,从而最大程度地减少了临床人员的参与。我们开发了一个机器学习支持的系统SmartTriage,它不仅可以通过与电子病历(EMR)进行紧密的双向整合进行常规症状检查。以EMR衍生的患者病史为条件,我们的系统从自由文本条目中确定了患者的主要投诉,然后提出一系列离散的问题以获得相关的症状。特定于患者的数据用于预测详细的ICD-10-CM代码以及药物,实验室和成像顺序。然后将患者反应和临床决策支持(CDS)预测插入EMR中。为了训练SmartTriage的机器学习组件,我们采用了超过2500万个初级保健遭遇和100万名患者自由文本的新型数据集。这些数据集用于构建:(1)基于短期记忆(LSTM)的长期记忆(LSTM)病史表示,(2)用于主要投诉提取的微调变压器模型,(3)问题测序的随机森林模型,以及(4)用于CDS预测的前馈网络。总体而言,我们的系统支持337个患者主要投诉,这些投诉共同构成了Kaiser Permanente所有初级保健遭遇的$> 90 \%$。
Symptom checkers have emerged as an important tool for collecting symptoms and diagnosing patients, minimizing the involvement of clinical personnel. We developed a machine-learning-backed system, SmartTriage, which goes beyond conventional symptom checking through a tight bi-directional integration with the electronic medical record (EMR). Conditioned on EMR-derived patient history, our system identifies the patient's chief complaint from a free-text entry and then asks a series of discrete questions to obtain relevant symptomatology. The patient-specific data are used to predict detailed ICD-10-CM codes as well as medication, laboratory, and imaging orders. Patient responses and clinical decision support (CDS) predictions are then inserted back into the EMR. To train the machine learning components of SmartTriage, we employed novel data sets of over 25 million primary care encounters and 1 million patient free-text reason-for-visit entries. These data sets were used to construct: (1) a long short-term memory (LSTM) based patient history representation, (2) a fine-tuned transformer model for chief complaint extraction, (3) a random forest model for question sequencing, and (4) a feed-forward network for CDS predictions. In total, our system supports 337 patient chief complaints, which together make up $>90\%$ of all primary care encounters at Kaiser Permanente.