论文标题

关于随机微分方程的本地混合技术的注意

Note on local mixing techniques for stochastic differential equations

论文作者

Veretennikov, Alexander

论文摘要

本文讨论了几种技术,这些技术可用于将耦合方法应用于随机微分方程(SDE)的解决方案。它们都在尺寸$ d \ ge 1 $中工作,尽管在$ d = 1 $中,最自然的方法是使用轨迹的交叉点,这仅需要强大的马尔可夫属性和扩散系数的非分类。在尺寸$ d> 1 $中,可以通过考虑离散时间$ n = 0,1,\ ldots $或安排特殊停止时间序列并使用本地马可福音-Dobrushin's(MD)条件来使用嵌入式Markov链。进一步的应用程序可能基于一个或另一个版本的MD条件。对于收敛和混合速率的研究(马尔可夫)过程必须是强大的马尔可夫和经常性。但是,复发是一个单独的问题,本文未讨论。

This paper discusses several techniques which may be used for applying the coupling method to solutions of stochastic differential equations (SDEs). They all work in dimension $d\ge 1$, although, in $d=1$ the most natural way is to use intersections of trajectories, which requires nothing but strong Markov property and non-degeneracy of the diffusion coefficient. In dimensions $d>1$ it is possible to use embedded Markov chains either by considering discrete times $n=0,1,\ldots$, or by arranging special stopping time sequences and to use local Markov -- Dobrushin's (MD) condition. Further applications may be based on one or another version of the MD condition. For studies of convergence and mixing rates the (Markov) process must be strong Markov and recurrent; however, recurrence is a separate issue which is not discussed in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源