论文标题

在几何安德烈 - 奥特猜想上

On the geometric André-Oort conjecture for variations of Hodge structures

论文作者

Chen, Jiaming

论文摘要

令$ \ mathbb {v} $为光滑复杂的准标记品种$ s $上的积分霍奇结构的两极分化变化。在本文中,我们表明,非因素特殊子视界的结合$(S,\ Mathbb {v})$是Shimura类型的带有主导期间地图的类型,是$ s $的特殊subvarieties的有限结合。这概括了先前的螺旋和ullmo arXiv的结果:数学/0404131,ullmo \ cite {ullmo07}关于非因素的分布(尤其是,特别是)特殊的shimura shimura各种环境中的特殊次等体(尤其是非常强的亚体)。霍奇结构。

Let $\mathbb{V}$ be a polarized variation of integral Hodge structure on a smooth complex quasi-projective variety $S$. In this paper, we show that the union of the non-factor special subvarieties for $(S, \mathbb{V})$, which are of Shimura type with dominant period maps, is a finite union of special subvarieties of $S$. This generalizes previous results of Clozel and Ullmo arXiv:math/0404131, Ullmo \cite{Ullmo07} on the distribution of the non-factor (in particular, strongly) special subvarieties in a Shimura variety to the non-classical setting and also answers positively the geometric part of a conjecture of Klingler on the André-Oort conjecture for variations of Hodge structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源