论文标题
整体薄膜粉红色粉红色粉红色的甲基硅链硅串联太阳能电池由扩散屏障启用
Monolithic thin-film chalcogenide-silicon tandem solar cells enabled by a diffusion barrier
论文作者
论文摘要
随着单一整合的钙钛矿/Si串联太阳能电池的最新成功之后,人们对寻找替代宽带的顶级顶部细胞材料的兴趣非常重要,并具有完全地球的含量,稳定,稳定且有效的串联太阳能电池。薄膜果酱核苷(TFC),例如CU2ZNSNS4(CZTS)可能是合适的顶级细胞材料。但是,TFC的缺点是,合成过程中通常需要至少一个高温步骤(> 500 C),这可能会污染Si底部细胞。在这里,我们系统地研究了CZT在SI底部太阳能电池上的单片整合。热弹性的双面隧道氧化钝接触(TopCon)结构用作底部细胞。顶部和底部细胞之间的薄(<25 nm)锡层,作为扩散屏障和重组层的两倍。我们表明,在高温硫化过程中,TIN成功减轻了CZTS元素向C-SI散装中的扩散,并且在仅10 nm TIN保护的样品中没有发现电动活性深SI散装缺陷的证据。 SI的后处理少数民族载体寿命超过1.5,s。即,高温硫化后,有希望的隐含的敞开电压(I-VOC)为715 mV。基于这些结果,我们证明了第一个概念验证两端CZTS/SI TANDEM设备,效率为1.1%,VOC为900 mV。这项研究的一般意义是,使用高温步骤在SI上的复杂半导体在技术上是可行的,并且有可能导致有效单体整合的两端串联太阳能电池。
Following the recent success of monolithically integrated Perovskite/Si tandem solar cells, great interest has been raised in searching for alternative wide bandgap top-cell materials with prospects of a fully earth-abundant, stable and efficient tandem solar cell. Thin film chalcogenides (TFCs) such as the Cu2ZnSnS4 (CZTS) could be suitable top-cell materials. However, TFCs have the disadvantage that generally at least one high temperature step (>500 C) is needed during the synthesis, which could contaminate the Si bottom cell. Here, we systematically investigate the monolithic integration of CZTS on a Si bottom solar cell. A thermally resilient double-sided Tunnel Oxide Passivated Contact (TOPCon) structure is used as bottom cell. A thin (<25 nm) TiN layer between the top and bottom cells, doubles as diffusion barrier and recombination layer. We show that TiN successfully mitigates in-diffusion of CZTS elements into the c-Si bulk during the high temperature sulfurization process, and find no evidence of electrically active deep Si bulk defects in samples protected by just 10 nm TiN. Post-process minority carrier lifetime in Si exceeded 1.5 ,s. i.e., a promising implied open-circuit voltage (i-Voc) of 715 mV after the high temperature sulfurization. Based on these results, we demonstrate a first proof-of-concept two-terminal CZTS/Si tandem device with an efficiency of 1.1% and a Voc of 900 mV. A general implication of this study is that the growth of complex semiconductors on Si using high temperature steps is technically feasible, and can potentially lead to efficient monolithically integrated two-terminal tandem solar cells.