论文标题

查询感知的小费一代用于垂直搜索

Query-aware Tip Generation for Vertical Search

论文作者

Yang, Yang, Hao, Junmei, Li, Canjia, Wang, Zili, Wang, Jingang, Zhang, Fuzheng, Fu, Rao, Hou, Peixu, Zhang, Gong, Wang, Zhongyuan

论文摘要

作为用户评论的一种简洁形式,提示具有解释搜索结果,协助用户决策并进一步改善用户在垂直搜索方案中的体验的独特优势。 TIP生成上的现有工作不考虑查询,这限制了在搜索方案中提示的影响。为了解决此问题,本文提出了一个查询感知的提示生成框架,将查询信息集成到编码和后续解码过程中。提出了两种变压器和复发神经网络(RNN)的特定适应性。对于变压器,查询影响被纳入编码器和解码器的自我发注意计算中。至于RNN,查询意识的编码器采用选择性网络来从审核中提取与查询相关的信息,而查询感知的解码器将查询信息集成到解码过程中的注意力计算中。该框架始终优于公共和现实世界工业数据集的竞争方法。最后但并非最不重要的一点是,在Dianping上进行的在线部署实验证明了提出的提示生成框架及其在线业务价值的优势。

As a concise form of user reviews, tips have unique advantages to explain the search results, assist users' decision making, and further improve user experience in vertical search scenarios. Existing work on tip generation does not take query into consideration, which limits the impact of tips in search scenarios. To address this issue, this paper proposes a query-aware tip generation framework, integrating query information into encoding and subsequent decoding processes. Two specific adaptations of Transformer and Recurrent Neural Network (RNN) are proposed. For Transformer, the query impact is incorporated into the self-attention computation of both the encoder and the decoder. As for RNN, the query-aware encoder adopts a selective network to distill query-relevant information from the review, while the query-aware decoder integrates the query information into the attention computation during decoding. The framework consistently outperforms the competing methods on both public and real-world industrial datasets. Last but not least, online deployment experiments on Dianping demonstrate the advantage of the proposed framework for tip generation as well as its online business values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源