论文标题
DBA强盗:在临时,分析工作负载下进行安全保证的自动驾驶指数调整
DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees
论文作者
论文摘要
自动化物理数据库设计一直在数据库研究中一直具有长期的兴趣,这是由于优化的结构可实现的大量性能提高。尽管取得了重大进展,但当今的大多数商业解决方案都是高度手动的,需要期望识别和提供代表性培训工作量的数据库管理员(DBA)的离线调用。不幸的是,诸如查询商店之类的最新进步仅提供了对动态环境的有限支持。此状态是站不住脚的:识别代表性的静态工作负载已不再现实;物理设计工具和物理设计工具仍然容易受到查询优化者的成本误解(源于不现实的假设,例如属性价值独立性和数据分布的均匀性)。我们提出了一种自动驾驶方法,用于在线索引选择,避免了DBA和查询优化器,而是通过战略探索和直接绩效观察来学习可行结构的好处。我们将问题视为不确定性下的顺序决策之一,特别是在强盗学习环境中。多臂匪徒平衡探索和剥削对可证明的平均绩效,这将融合到固定的政策,这是最佳的,这是完美的事后。我们的全面经验结果表明,与最先进的商业调音工具相比,换档和临时工作量的速度最高为75%,静态工作量加速28%。
Automating physical database design has remained a long-term interest in database research due to substantial performance gains afforded by optimised structures. Despite significant progress, a majority of today's commercial solutions are highly manual, requiring offline invocation by database administrators (DBAs) who are expected to identify and supply representative training workloads. Unfortunately, the latest advancements like query stores provide only limited support for dynamic environments. This status quo is untenable: identifying representative static workloads is no longer realistic; and physical design tools remain susceptible to the query optimiser's cost misestimates (stemming from unrealistic assumptions such as attribute value independence and uniformity of data distribution). We propose a self-driving approach to online index selection that eschews the DBA and query optimiser, and instead learns the benefits of viable structures through strategic exploration and direct performance observation. We view the problem as one of sequential decision making under uncertainty, specifically within the bandit learning setting. Multi-armed bandits balance exploration and exploitation to provably guarantee average performance that converges to a fixed policy that is optimal with perfect hindsight. Our comprehensive empirical results demonstrate up to 75% speed-up on shifting and ad-hoc workloads and 28% speed-up on static workloads compared against a state-of-the-art commercial tuning tool.