论文标题

旋转不变的空中图像检索,集体卷积度量学习

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

论文作者

Chung, Hyunseung, Nam, Woo-Jeoung, Lee, Seong-Whan

论文摘要

遥感图像检索(RSIR)是根据与查询图像相比的相似程度对数据库图像进行排名的过程。随着由于射击范围,角度和遥控传感器位置的多样性,RSIR的复杂性增加,对解决这些问题并改善检索性能的方法的需求越来越不断增加。在这项工作中,我们通过将小组卷积与注意机制和度量学习相结合,引入了一种新的方法来检索空中图像,从而使旋转变化具有稳健性。为了完善和强调重要特征,我们在每个组卷积阶段都应用了渠道的关注。通过利用小组卷积和渠道关注的特征,可以承认旋转但相同位置的图像之间的平等性。培训程序有两个主要步骤:(i)使用空中图像数据集(AID)进行分类训练网络,(ii)用三重速度损失对网络进行微调,以与Google Earth韩国和NWPU-Resisc45数据集进行检索。结果表明,所提出的方法性能超过了旋转和原始环境中其他最先进的检索方法。此外,我们利用类激活图(CAM)可视化方法和基线之间主要特征的明显差异,从而在旋转环境中更好地适应性。

Remote sensing image retrieval (RSIR) is the process of ranking database images depending on the degree of similarity compared to the query image. As the complexity of RSIR increases due to the diversity in shooting range, angle, and location of remote sensors, there is an increasing demand for methods to address these issues and improve retrieval performance. In this work, we introduce a novel method for retrieving aerial images by merging group convolution with attention mechanism and metric learning, resulting in robustness to rotational variations. For refinement and emphasis on important features, we applied channel attention in each group convolution stage. By utilizing the characteristics of group convolution and channel-wise attention, it is possible to acknowledge the equality among rotated but identically located images. The training procedure has two main steps: (i) training the network with Aerial Image Dataset (AID) for classification, (ii) fine-tuning the network with triplet-loss for retrieval with Google Earth South Korea and NWPU-RESISC45 datasets. Results show that the proposed method performance exceeds other state-of-the-art retrieval methods in both rotated and original environments. Furthermore, we utilize class activation maps (CAM) to visualize the distinct difference of main features between our method and baseline, resulting in better adaptability in rotated environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源