论文标题

在无线电动通信网络中,用于分布式资源管理的多代理深入学习学习

Multi-Agent Deep Reinforcement Learning for Distributed Resource Management in Wirelessly Powered Communication Networks

论文作者

Hwang, Sangwon, Kim, Hanjin, Lee, Hoon, Lee, Inkyu

论文摘要

本文研究了基于多机构无线电动通信网络(WPCN)的基于多代理的深入增强学习(MADRL)资源分配方法,其中多个混合访问点(H-aps)无线充电能量限制用户从中收集数据。我们设计了分布式增强学习策略,其中H-APS单独确定时间和功率分配变量。与需要在中央单元收集的全球信息的传统集中优化算法不同,拟议的MADRL技术将HAP模拟为HAP作为代理,仅基于其本地可观察到的状态。数值结果验证了所提出的方法可以实现集中算法的可比性能。

This paper studies multi-agent deep reinforcement learning (MADRL) based resource allocation methods for multi-cell wireless powered communication networks (WPCNs) where multiple hybrid access points (H-APs) wirelessly charge energy-limited users to collect data from them. We design a distributed reinforcement learning strategy where H-APs individually determine time and power allocation variables. Unlike traditional centralized optimization algorithms which require global information collected at a central unit, the proposed MADRL technique models an H-AP as an agent producing its action based only on its own locally observable states. Numerical results verify that the proposed approach can achieve comparable performance of the centralized algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源