论文标题
Frobenius稳定的多个元素稳定的多个类型的阳性特征
Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic
论文作者
论文摘要
本文旨在调查多元系统在阳性特征中的一般类型的效果问题上。实际上,我们将考虑一个子线性系统$ | s^0 _ { - }(x,k_x + nk_x)| \ subseteq | h^0(x,x,k_x + nk_x)| $由某些Frobenius稳定部分生成,并证明,对于最小终端的三倍$ x $,带有$ q(x)> 0 $或gorenstein singularities的三倍$ x $,如果$ q(x)> 0 $或gorenstein singularities,则是$ n \ geq 28 $,然后如果\ neq \ emptyset $;如果$ n \ geq 42 $,则线性系统$ | s^0 _ { - }(x,k_x + nk_x)| $定义了一个Birational Map。
This paper aims to investigate effectivity problems of pluricanonical systems on varieties of general type in positive characteristic. In practice, we will consider a sub-linear system $|S^0_{-}(X, K_X + nK_X)| \subseteq |H^0(X, K_X +nK_X)|$ generated by certain Frobenius stable sections, and prove that for a minimal terminal threefold $X$ of general type with either $q(X)>0$ or Gorenstein singularities, if $n\geq 28$ then $|S^0_{-}(X, K_X + nK_X)| \neq \emptyset$; if $n\geq 42$ then the linear system $|S^0_{-}(X, K_X + nK_X)|$ defines a birational map.