论文标题

一致性和连贯性增强了故事的产生

Consistency and Coherency Enhanced Story Generation

论文作者

Wang, Wei, Li, Piji, Zheng, Hai-Tao

论文摘要

故事产生是一项具有挑战性的任务,它要求在整个故事中保持情节和角色的一致性。先前的作品表明,GPT2是一种大规模的语言模型,在故事产生方面取得了良好的表现。但是,我们观察到,GPT2产生的故事中仍然存在一些严重的问题,这些问题可以分为两个折叠:一致性和相干性。在一致性方面,GPT2不能明确保证该地块的一致性。另一方面,生成的故事通常包含核心错误错误。就相干性而言,GPT2并未考虑到故事句子之间的话语关系。为了增强生成故事的一致性和相干性,我们提出了一个两阶段的一代框架,第一阶段是整理故事大纲,描绘故事情节和事件,第二阶段是将轮廓扩展到完整的故事中。因此,可以明确控制和保证该图的一致性。此外,还合并了核心监督信号以减少核心错误错误并提高核心一致性。此外,我们设计了话语关系建模的辅助任务,以提高生成的故事的相干性。故事数据集的实验结果表明,我们的模型在自动指标和人类评估方面都优于基线方法。

Story generation is a challenging task, which demands to maintain consistency of the plots and characters throughout the story. Previous works have shown that GPT2, a large-scale language model, has achieved good performance on story generation. However, we observe that several serious issues still exist in the stories generated by GPT2 which can be categorized into two folds: consistency and coherency. In terms of consistency, on one hand, GPT2 cannot guarantee the consistency of the plots explicitly. On the other hand, the generated stories usually contain coreference errors. In terms of coherency, GPT2 does not take account of the discourse relations between sentences of stories directly. To enhance the consistency and coherency of the generated stories, we propose a two-stage generation framework, where the first stage is to organize the story outline which depicts the story plots and events, and the second stage is to expand the outline into a complete story. Therefore the plots consistency can be controlled and guaranteed explicitly. In addition, coreference supervision signals are incorporated to reduce coreference errors and improve the coreference consistency. Moreover, we design an auxiliary task of discourse relation modeling to improve the coherency of the generated stories. Experimental results on a story dataset show that our model outperforms the baseline approaches in terms of both automatic metrics and human evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源