论文标题

随机步行的运行最大范围与小漂移

Bounds on the running maximum of a random walk with small drift

论文作者

Busani, Ofer, Seppäläinen, Timo

论文摘要

我们得出了一个下限,因为可能是随机步行I.I.D. \增量,而小的负漂移$μ$超过了时间$ n $的值$ x> 0 $。当力矩生成函数以围绕原点的间隔界定时,该概率可以在下面以$ 1-O(x |μ| \ log n)$界定。该方法是基本的,不使用强近似定理。

We derive a lower bound for the probability that a random walk with i.i.d.\ increments and small negative drift $μ$ exceeds the value $x>0$ by time $N$. When the moment generating functions are bounded in an interval around the origin, this probability can be bounded below by $1-O(x|μ| \log N)$. The approach is elementary and does not use strong approximation theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源