论文标题
弱形的组合源积分方程,并明确反转合并源条件
A Weak-Form Combined Source Integral Equation with Explicit Inversion of the Combined-Source Condition
论文作者
论文摘要
如果组合源(CS)条件以弱形式强制执行,则可以非常准确地将完美导电散射器表面的电场的组合源积分方程(CSIE)非常准确地离散。我们引入了一种技术,以加速这种CSIE的迭代解决方案。证明方程系统的迭代解决方案可以通过在对正向操作员的任何评估中明确反转弱形式CS条件来非常有效地执行。这减少了未知数的数量,并以微不足道的线性成本可改善收敛行为。数值结果表明,新的CSIE在高临界模拟中优于经典CFIE。
The combined source integral equation (CSIE) for the electric field on the surface of a perfect electrically conducting scatterer can be discretized very accurately with lowest-order Rao-Wilton-Glisson basis and testing functions if the combined-source (CS) condition is enforced in weak form. We introduce a technique to accelerate the iterative solution for this kind of CSIE. It is demonstrated that the iterative solution of the equation system can be performed very efficiently by explicitly inverting the weak-form CS condition in any evaluation of the forward operator. This reduces the number of unknowns and results in improved convergence behavior at negligible, linear cost. Numerical results demonstrate that the new CSIE outperforms the classical CFIE for high-accuracy simulations.