论文标题
OGLE-2018-BLG-0799LB:A $ Q \ sim 2.7 \ times 10^{ - 3} $ PLANET带有Spitzer Alallax
OGLE-2018-BLG-0799Lb: a $q \sim 2.7 \times 10^{-3}$ Planet with Spitzer Parallax
论文作者
论文摘要
我们在微透镜事件OGLE-2018-BLG-0799中报告了行星的发现和分析。行星信号是通过几个基于地面的望远镜观察到的,而行星宿主比率为$ q =(2.65 \ pm 0.16)\ times 10^{ - 3} $。基于地面的观测结果对Angular Einstein Radius $θ_{\ rm E} $产生了限制,而微透明视差vector $ \vecπ_{\ rm e} $受Spitzer数据的强烈约束。但是,2019年的Spitzer基线数据揭示了Spitzer光度法中的系统学,因此视差的幅度存在歧义。在我们首选的解释中,使用银河模型进行完整的贝叶斯分析表明,行星系统由$ m _ {\ rm Planet} = 0.26 _ { - 0.11}^{+0.22}^{+0.22} 〜M_ {J} 0.093 _ { - 0.038}^{+0.082} 〜m _ {\ odot} $,距离为$ d _ {\ rm L} = 3.71 _ { - 1.70}^{+3.24} $ kpc。数据的替代解释将最小值的定位沿弧形microlens视差约束而变化。反过来,这会产生一个更大的主机,中位质量为$ 0.13 {m _ {\ odot}}} $,距离为6.3 kpc。该分析证明了示波器圈形式主义的鲁棒性,但表明需要进一步研究以评估系统学如何影响Microlens视差载体的特定定位,从而影响了推断的物理参数。
We report the discovery and analysis of a planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is $q = (2.65 \pm 0.16) \times 10^{-3}$. The ground-based observations yield a constraint on the angular Einstein radius $θ_{\rm E}$, and the microlensing parallax vector $\vecπ_{\rm E}$, is strongly constrained by the Spitzer data. However, the 2019 Spitzer baseline data reveal systematics in the Spitzer photometry, so there is ambiguity in the magnitude of the parallax. In our preferred interpretation, a full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{\rm planet} = 0.26_{-0.11}^{+0.22}~M_{J}$ planet orbiting an $M_{\rm host} = 0.093_{-0.038}^{+0.082}~M_{\odot}$, at a distance of $D_{\rm L} = 3.71_{-1.70}^{+3.24}$ kpc. An alternate interpretation of the data shifts the localization of the minima along the arc-shaped microlens parallax constraints. This, in turn, yields a more massive host with median mass of $0.13 {M_{\odot}}$ at a distance of 6.3 kpc. This analysis demonstrates the robustness of the osculating circles formalism, but shows that further investigation is needed to assess how systematics affect the specific localization of the microlens parallax vector and, consequently, the inferred physical parameters.