论文标题
虚假真空的命运:早期宇宙量子模拟中的有限温度,熵和拓扑阶段
The fate of the false vacuum: Finite temperature, entropy and topological phase in quantum simulations of the early universe
论文作者
论文摘要
尽管是“大爆炸”和宇宙通胀理论的核心,但尚未测试假真空隧道的量子场理论预测。为了解决问题的指数复杂性,已经提出了一种以工程化的玻色 - 因斯坦冷凝物(BEC)形式的桌面量子模拟器,以提供量子场方程的动态溶液。在本文中,我们在现实条件和温度下对BEC量子模拟器进行了数值可行性研究,并具有近似截短的Wigner(TW)相空间方法。我们报告了这些模拟中错误真空隧道的观察,以及具有不同拓扑特性的多个气泡“宇宙”的形成。该隧道给出了耦合的玻色场的相对相的过渡,从亚稳态到稳定的“真空”。我们包括在实验室实验中发现的有限温度效应,还分析了浮雕空间中模构不稳定性的截止依赖性。我们的数值相空间模型不使用薄壁近似,而薄壁近似不适合宇宙学有趣的模型。预计将提供正确的量子处理,包括动态过程中的叠加和纠缠。通过分析一个可观察到的非本地可观察到的称为拓扑相熵(TPE),我们的模拟提供了有关真空中相结构的信息。我们观察到一种合作效应,其中代表不同宇宙的真空气泡具有两个不同的拓扑中的一个或另一个。 TPE最初会随时间增加,随着多个宇宙的形成,达到峰值,然后随着时间的时间减少到相位订购的真空状态。这为宇宙形成具有两个不同阶段之一的模型提供了模型,这可能是解决粒子 - 抗粒子不对称问题的问题。
Despite being at the heart of the theory of the "Big Bang" and cosmic inflation, the quantum field theory prediction of false vacuum tunneling has not been tested. To address the exponential complexity of the problem, a table-top quantum simulator in the form of an engineered Bose-Einstein condensate (BEC) has been proposed to give dynamical solutions of the quantum field equations. In this paper, we give a numerical feasibility study of the BEC quantum simulator under realistic conditions and temperatures, with an approximate truncated Wigner (tW) phase-space method. We report the observation of false vacuum tunneling in these simulations, and the formation of multiple bubble 'universes' with distinct topological properties. The tunneling gives a transition of the relative phase of coupled Bose fields from a metastable to a stable 'vacuum'. We include finite temperature effects that would be found in a laboratory experiment and also analyze the cut-off dependence of modulational instabilities in Floquet space. Our numerical phase-space model does not use thin-wall approximations, which are inapplicable to cosmologically interesting models. It is expected to give the correct quantum treatment including superpositions and entanglement during dynamics. By analyzing a nonlocal observable called the topological phase entropy (TPE), our simulations provide information about phase structure in the true vacuum. We observe a cooperative effect in which the true vacua bubbles representing distinct universes each have one or the other of two distinct topologies. The TPE initially increases with time, reaching a peak as the multiple universes are formed, and then decreases with time to the phase-ordered vacuum state. This gives a model for the formation of universes with one of two distinct phases, which is a possible solution to the problem of particle-antiparticle asymmetry.