论文标题
用于修剪在线推荐系统的自适应密集到范围的范式,使用非平稳数据
Adaptive Dense-to-Sparse Paradigm for Pruning Online Recommendation System with Non-Stationary Data
论文作者
论文摘要
大规模的深度学习通过采用更广泛和更深的模型为提高内容推荐系统的质量提供了巨大的机会,但这在现代数据中心具有巨大的基础设施成本和碳足迹。修剪是一种有效的技术,可减少记忆和计算模型推理的需求。但是,由于持续的数据分配变化(又称非平稳数据),在线推荐系统进行修剪具有挑战性。尽管完整模型上的增量训练能够适应非平稳数据,但将其直接应用于修剪模型上导致准确损失。这是因为修剪后的稀疏模式需要调整以学习新模式。据我们所知,这是第一项提供深入分析和讨论将修剪用于具有非平稳数据分布的在线推荐系统的工作。总体而言,这项工作做出了以下贡献:1)我们提出了一种具有新型修剪算法的稀疏范式的自适应密度,用于修剪具有非平稳数据分布的大规模推荐系统; 2)我们设计了修剪算法,以自动学习跨层的稀疏性,以避免重复手动调整,这对于修剪推荐系统的异质体系结构至关重要,该系统训练有非平稳数据。
Large scale deep learning provides a tremendous opportunity to improve the quality of content recommendation systems by employing both wider and deeper models, but this comes at great infrastructural cost and carbon footprint in modern data centers. Pruning is an effective technique that reduces both memory and compute demand for model inference. However, pruning for online recommendation systems is challenging due to the continuous data distribution shift (a.k.a non-stationary data). Although incremental training on the full model is able to adapt to the non-stationary data, directly applying it on the pruned model leads to accuracy loss. This is because the sparsity pattern after pruning requires adjustment to learn new patterns. To the best of our knowledge, this is the first work to provide in-depth analysis and discussion of applying pruning to online recommendation systems with non-stationary data distribution. Overall, this work makes the following contributions: 1) We present an adaptive dense to sparse paradigm equipped with a novel pruning algorithm for pruning a large scale recommendation system with non-stationary data distribution; 2) We design the pruning algorithm to automatically learn the sparsity across layers to avoid repeating hand-tuning, which is critical for pruning the heterogeneous architectures of recommendation systems trained with non-stationary data.