论文标题

朝在线转向火焰喷雾热解纳米颗粒合成

Towards Online Steering of Flame Spray Pyrolysis Nanoparticle Synthesis

论文作者

Levental, Maksim, Chard, Ryan, Libera, Joseph A., Chard, Kyle, Koripelly, Aarthi, Elias, Jakob R., Schwarting, Marcus, Blaiszik, Ben, Stan, Marius, Chaudhuri, Santanu, Foster, Ian

论文摘要

火焰喷雾热解(FSP)是一种制造技术,可用于大规模生产工程纳米颗粒,用于催化,能源材料,复合材料等。 FSP仪器高度取决于许多可调节的参数,包括燃油喷射速率,燃料氧混合物和温度,这可能会极大地影响屈服纳米颗粒的质量,数量和特性。优化FSP合成需要监视,分析,表征和修改实验条件。此外,我们提出了表征未燃烧溶液的体积分布的高斯(DOG)方法的混合CPU-GPU差异,以便启用近实时的时间优化和FSP实验的转向。与标准实现的比较表明,我们的方法是更有效的数量级。该替代信号可以作为在线端到端管道的组成部分,从而最大化合成产量。

Flame Spray Pyrolysis (FSP) is a manufacturing technique to mass produce engineered nanoparticles for applications in catalysis, energy materials, composites, and more. FSP instruments are highly dependent on a number of adjustable parameters, including fuel injection rate, fuel-oxygen mixtures, and temperature, which can greatly affect the quality, quantity, and properties of the yielded nanoparticles. Optimizing FSP synthesis requires monitoring, analyzing, characterizing, and modifying experimental conditions.Here, we propose a hybrid CPU-GPU Difference of Gaussians (DoG)method for characterizing the volume distribution of unburnt solution, so as to enable near-real-time optimization and steering of FSP experiments. Comparisons against standard implementations show our method to be an order of magnitude more efficient. This surrogate signal can be deployed as a component of an online end-to-end pipeline that maximizes the synthesis yield.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源