论文标题

正式验证支持学习的国家估计系统的鲁棒性和弹性

Formal Verification of Robustness and Resilience of Learning-Enabled State Estimation Systems

论文作者

Huang, Wei, Zhou, Yifan, Jin, Gaojie, Sun, Youcheng, Meng, Jie, Zhang, Fan, Huang, Xiaowei

论文摘要

本文提出了一种正式的验证指导方法,用于有原则的设计和实施强大的和弹性学习的系统。我们专注于支持学习的状态估计系统(LE-SES),这些系统已广泛用于机器人应用程序,以确定复杂系统的当前状态(例如,位置,速度,方向等)。 LE-SES是网络系统,由一组连接的组件组成,包括:贝叶斯过滤器进行状态估计和用于处理感觉输入的神经网络。我们从正式验证的角度研究LE-SESS,这决定了系统模型对指定属性的满足。在Le-Sess上,我们研究了两个关键属性 - 鲁棒性和弹性 - 并提供其正式定义。为了启用正式验证,我们将LE-sess减少为新型标记的过渡系统,该系统在论文中名为{po}^2-lts,并正式表示为约束优化目标。我们证明了验证问题是NP完成的。基于{PO}^2-LT和优化目标,开发了实用的验证算法来检查LE-SESS上属性的满足性。作为一个主要的案例研究,我们询问了一个现实世界中的动态跟踪系统,该系统使用单个卡尔曼过滤器(KF)(KF)(贝叶斯过滤器的特殊情况)来定位和跟踪地面车辆。它的感知系统基于卷积神经网络,处理高分辨率广泛运动图像(WAMI)数据流。实验结果表明,我们的算法不仅可以验证WAMI跟踪系统的属性,还可以提供代表性的示例,后者激发了我们进行增强的LE-SESS设计,其中需要运行时监视器或接合KFS。实验结果证实了增强设计的鲁棒性的改善。

This paper presents a formal verification guided approach for a principled design and implementation of robust and resilient learning-enabled systems. We focus on learning-enabled state estimation systems (LE-SESs), which have been widely used in robotics applications to determine the current state (e.g., location, speed, direction, etc.) of a complex system. The LE-SESs are networked systems, composed of a set of connected components including: Bayes filters for state estimation, and neural networks for processing sensory input. We study LE-SESs from the perspective of formal verification, which determines the satisfiabilty of a system model against the specified properties. Over LE-SESs, we investigate two key properties -- robustness and resilience -- and provide their formal definitions. To enable formal verification, we reduce the LE-SESs to a novel class of labelled transition systems, named {PO}^2-LTS in the paper, and formally express the properties as constrained optimisation objectives. We prove that the verification problems are NP-complete. Based on {PO}^2-LTS and the optimisation objectives, practical verification algorithms are developed to check the satisfiability of the properties on the LE-SESs. As a major case study, we interrogate a real-world dynamic tracking system which uses a single Kalman Filter (KF) -- a special case of Bayes filter -- to localise and track a ground vehicle. Its perception system, based on convolutional neural networks, processes a high-resolution Wide Area Motion Imagery (WAMI) data stream. Experimental results show that our algorithms can not only verify the properties of the WAMI tracking system but also provide representative examples, the latter of which inspired us to take an enhanced LE-SESs design where runtime monitors or joint-KFs are required. Experimental results confirm the improvement in the robustness of the enhanced design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源