论文标题

网格单元模型的Theta功能和最佳晶格

Theta functions and optimal lattices for a grid cells model

论文作者

Bétermin, Laurent

论文摘要

当动物在二维环境上导航时,某些类型的神经元被称为“网格细胞”在三角网格上发射,而最近的研究表明,以三维的面部中心地带(FCC)晶格是三个维度中同一现象的良好候选者。本文的目的是通过考虑具有泊松统计量并定期扩散高斯调音曲线的无限独立神经元(一个模块)来提供这些现象的新证据。在所有可能的单位密度晶格中,对于Fisher信息的所有可能的最大化问题,该问题的存在问题被转化为Fisher信息,该信息测量了$ \ Mathbb {r}^d $中网格单元表示的准确性。这些Fisher信息已将Lattice Theta的功能转化为构建块。我们首先得出渐近和数值结果,显示了相对于高斯参数和射击场的大小(非)晶格的(非)最大性。在特定情况下,射击场的大小和晶格间距与实验匹配,我们已经数值检查是否可以找到一个高斯参数的值,而三角形晶格始终是最佳的。在射击位置的径向对称分布的情况下,我们还表征了所有晶格,这些晶格是属于开放间隔的固定尺度的Fisher信息的关键点(我们称这些晶格为“体积固定”)。它使我们能够比较尺寸2和3中有限数量的晶格的Fisher信息,并提供了三角形和FCC晶格的最优性的另一个证据。

Certain types of neurons, called "grid cells", have been shown to fire on a triangular grid when an animal is navigating on a two-dimensional environment, whereas recent studies suggest that the face-centred-cubic (FCC) lattice is the good candidate for the same phenomenon in three dimensions. The goal of this paper is to give new evidences of these phenomena by considering a infinite set of independent neurons (a module) with Poisson statistics and periodic spread out Gaussian tuning curves. This question of the existence of an optimal grid is transformed into a maximization problem among all possible unit density lattices for a Fisher Information which measures the accuracy of grid-cells representations in $\mathbb{R}^d$. This Fisher Information has translated lattice theta functions as building blocks. We first derive asymptotic and numerical results showing the (non-)maximality of the triangular lattice with respect to the Gaussian parameter and the size of the firing field. In a particular case where the size of the firing fields and the lattice spacing match with experiments, we have numerically checked that it is possible to find a value for the Gaussian parameter above which the triangular lattice is always optimal. In the case of a radially symmetric distribution of firing locations, we also characterize all the lattices that are critical points for the Fisher Information at fixed scales belonging to an open interval (we call these lattices "volume stationary"). It allows us to compare the Fisher Information of a finite number of lattices in dimension 2 and 3 and to give another evidences of the optimality of the triangular and FCC lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源