论文标题

在连续和离散的空间中对gans进行协作培训,以供文本生成

Collaborative Training of GANs in Continuous and Discrete Spaces for Text Generation

论文作者

Kim, Yanghoon, Won, Seungpil, Yoon, Seunghyun, Jung, Kyomin

论文摘要

由于语言的离散性质,将生成性对抗网络(GAN)应用于与文本相关的任务是具有挑战性的。一系列研究通过采用强化学习(RL)并直接在离散的行动空间中优化下一字采样策略来解决此问题。这种方法计算完整句子的奖励,并避免由于曝光偏差而导致的错误积累。其他方法采用近似技术,将文本映射到连续表示形式,以规避非差异性离散过程。特别是,基于自动编码器的方法有效地产生了可以建模复杂离散结构的强大表示。在本文中,我们提出了一种新颖的文本gan体系结构,以促进对连续空间和离散空间方法的协作培训。我们的方法采用自动编码器来学习隐式数据歧管,为在连续空间中的对抗训练提供了学习目标。此外,完整的文本输出将在离散空间中直接评估和更新。两个对抗培训之间的协作相互作用有效地使不同空间中的文本表示形式正常。三个标准基准数据集的实验结果表明,在质量,多样性和全球一致性方面,我们的模型基本上优于最先进的文本gan。

Applying generative adversarial networks (GANs) to text-related tasks is challenging due to the discrete nature of language. One line of research resolves this issue by employing reinforcement learning (RL) and optimizing the next-word sampling policy directly in a discrete action space. Such methods compute the rewards from complete sentences and avoid error accumulation due to exposure bias. Other approaches employ approximation techniques that map the text to continuous representation in order to circumvent the non-differentiable discrete process. Particularly, autoencoder-based methods effectively produce robust representations that can model complex discrete structures. In this paper, we propose a novel text GAN architecture that promotes the collaborative training of the continuous-space and discrete-space methods. Our method employs an autoencoder to learn an implicit data manifold, providing a learning objective for adversarial training in a continuous space. Furthermore, the complete textual output is directly evaluated and updated via RL in a discrete space. The collaborative interplay between the two adversarial trainings effectively regularize the text representations in different spaces. The experimental results on three standard benchmark datasets show that our model substantially outperforms state-of-the-art text GANs with respect to quality, diversity, and global consistency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源